Manifestation of Charged and Strained Graphene Layers in the Raman Response of Graphite Intercalation Compounds
نویسندگان
چکیده
We present detailed multifrequency resonant Raman measurements of potassium graphite intercalation compounds (GICs). From a well-controlled and consecutive in situ intercalation and high-temperature deintercalation approach the response of each stage up to stage VI is identified. The positions of the G and 2D lines as a function of staging depend on the charge transfer from K to the graphite layers and on the lattice expansion. Ab initio calculations of the density and the electronic band structure demonstrate that most (but not all) of the transferred charge remains on the graphene sheets adjacent to the intercalant layers. This leads to an electronic decoupling of these "outer" layers from the ones sandwiched between carbon layers and consequently to a decoupling of the corresponding Raman spectra. Thus, higher stage GICs offer the possibility to measure the vibrations of single, double, and multilayer graphene under conditions of biaxial strain. This strain can additionally be correlated to the in-plane lattice constants of GICs determined by X-ray diffraction. The outcome of this study demonstrates that Raman spectroscopy is a very powerful tool to identify local internal strain in pristine and weakly charged single and few-layer graphene and their composites, yielding even absolute lattice constants.
منابع مشابه
Stable p- and n-type doping of few-layer graphene/graphite
ZnMg and NbCl5 were intercalated in graphite and the presence of such molecules between the graphene sheets results in nand p-type doping, respectively. The doping effect is confirmed by Hall and Raman measurements and the intercalation process is monitored by scanning tunneling microscopy. After intercalation the carrier concentration increase almost an order of magnitude and reaches values as...
متن کاملNon-oxidative intercalation and exfoliation of graphite by Brønsted acids.
Graphite intercalation compounds are formed by inserting guest molecules or ions between sp(2)-bonded carbon layers. These compounds are interesting as synthetic metals and as precursors to graphene. For many decades it has been thought that graphite intercalation must involve host-guest charge transfer, resulting in partial oxidation, reduction or covalent modification of the graphene sheets. ...
متن کاملIntercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability.
We use anhydrous ferric chloride (FeCl(3)) to intercalate graphite flakes consisting of 2-4 graphene layers and to dope graphene monolayers. The intercalant, staging, stability, and doping of the resulting intercalation compounds (ICs) are characterized by Raman scattering. The G peak of heavily doped monolayer graphene upshifts to ∼1627 cm(-1). The 2-4 layer ICs have similar upshifts, and a Lo...
متن کاملIn situ Raman study of lithium-ion intercalation into microcrystalline graphite.
The first and second order Raman spectra of graphite during the first lithiation and delithiation have been investigated in a typical lithium-ion battery electrolyte. In situ, real-time Raman measurements under potential control enable the probing of the graphitic negative electrode surface region during ion insertion and extraction. The experimental results reveal the staging formation of a si...
متن کاملIn-situ synthesis and characterization of reduced graphene oxide –Ag nanocomposites
Reduced graphene oxide(rGO)–silver(Ag) nanocomposites have been prepared by using solution based facile one-pot synthesis process. The reaction process involves high-temperature liquid-phase exfoliation of graphite oxide and silver acetate in presence of N-N’dimethylformamide (DMF) solvent, resulting in simultaneous formation of rGO as well as Ag nanoparticles. Different nanocomposites have bee...
متن کامل